Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs

نویسندگان

چکیده

We formulate and analyze a goal-oriented adaptive finite element method for semilinear elliptic PDE linear goal functional. The discretization is based on elements of arbitrary (but fixed) polynomial degree involves linearized dual problem. linearization part the proposed algorithm, which employs marking strategy different to that standard methods. Moreover, unlike well-known dual-weighted residual strategy, analyzed error estimators are completely computable. prove convergence and, first time in context adaptivity nonlinear PDEs, optimal algebraic rates. In particular, analysis does not require sufficiently fine initial mesh.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On goal-oriented adaptivity for elliptic optimal control problems

The paper proposes goal-oriented error estimation and mesh refinement for optimal control problems with elliptic PDE constraints using the value of the reduced cost functional as quantity of interest. Error representation, hierarchical error estimators, and greedy-style error indicators are derived and compared to their counterparts when using the all-at-once cost functional as quantity of inte...

متن کامل

Newton's Method and Morse Index for semilinear Elliptic PDEs

In this paper we primarily consider the family of elliptic PDEs ∆u+ f(u) = 0 on the square region Ω = (0, 1)× (0, 1) with zero Dirichlet boundary condition. Following our previous analysis and numerical approximations which relied on the variational characterization of solutions as critical points of an “action” functional, we consider Newton’s method on the gradient of that functional. We use ...

متن کامل

A heterogeneous stochastic FEM framework for elliptic PDEs

We introduce a new concept of sparsity for the stochastic elliptic operator −div (a(x,ω)∇(·)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the...

متن کامل

Convergence of goal-oriented adaptive finite element methods for semilinear problems

In this article we develop convergence theory for a class of goal-oriented adaptive finite element algorithms for second order semilinear elliptic equations. We first introduce several approximate dual problems, and briefly discuss the target problem class. We then review some standard facts concerning conforming finite element discretization and error-estimate-driven adaptive finite element me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & mathematics with applications

سال: 2022

ISSN: ['0898-1221', '1873-7668']

DOI: https://doi.org/10.1016/j.camwa.2022.05.008